
Modeling the Uncertainty in Pointing of 
Moving Targets with Arbitrary Shapes

Abstract
When we try to acquire moving targets such as 
shooting enemies in computer games, the shapes of 
these targets are often varied. Considering the effects 
of target shape in moving target selection is essential 
for predicting user performances such as error rate in 
user interfaces involving dynamic content. In this 
paper, we propose a model to be descriptive of the 
endpoint uncertainty in pointing of moving targets with
arbitrary shapes. The model combines the Gaussian 
mixture model (GMM) with a Ternary-Gaussian model 
to describe the impacts of target shape and target 
motion on selection endpoints of moving targets. 
Compared to the-state-of-the-art, our model achieved 
higher performance in the fitting of endpoint 
distribution and predicting selection error rate.
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Introduction
Moving target acquisition, as a fundamental research
problem in HCI, has recently attracted more and more 
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attentions [8], [9], [10], [12]. Prior models that predict
pointing uncertainty (i.e., the distribution of selection 
endpoints) in moving target selection show an 
important role in understanding user behaviors and 
predicting user performances in user interfaces 
involving dynamic content. However, as far as we 
know, there is no previous attempt try to consider the 
influence of target shape on modeling pointing 
uncertainty for moving targets. Such a model could be
essential for explaining user performances for 
interfaces taking the shaped targets as major 
interaction objects like animation systems and virtual 
reality (VR) applications.

The influence of target shape on pointing static targets
has been studied in HCI literature. Grossman and 
Balakrishnan et al. [4][5] proposed a probabilistic 
model to predict movement time (MT) for targets with
arbitrary shapes by mapping endpoint distribution to 
the index of difficulty (ID) in Fitts' law [2], [13]. Their 
works suggest that the target shape has a significant 
impact on user performances, and the MT can be 
predicted by obtaining the selection center for each 
shaped target. However, their works do not predict the 
distributions of selection endpoints, leaving the 
selection uncertainty, the more fundamental factor in 
the pointing task affecting user performances [9], can 
only be observed from user's data. Further, the
interaction between of target shape and target motion
on endpoint distribution has not been studied.

In order to solve this problem, we combined a Ternary-
Gaussian model [9], [10], one of the-state-of-the-arts 
in predicting endpoint distribution for moving targets,
with the Gaussian mixture model (GMM) to model 
pointing of moving targets with arbitrary shapes. 

Consider modeling the selection endpoints for a shaped 
target as shown in Figure 1 (a). We first split the target 
into sub-targets by iteratively selecting max inscribed 
circles of the target (Figure 1 (b)); then we used the
Ternary-Gaussian model to generate endpoint 
distribution on each sub-target (Figure 1 (c)); finally, 
we used the Gaussian mixture model to mix these 
Gaussian distributions according to a weighting strategy
(Figure 1 (d)). Compared with the original Ternary-
Gaussian model, our approach achieved a higher fitting 
performance indicated by smaller Hellinger Distance [6]
on moving targets with arbitrary shapes. By using the 
model to predict error rates of pointing moving targets, 
our model also outperformed the Ternary-Gaussian 
model with lower mean absolute error (MAE).

Related Work
In target acquisition, Fitts' law [2], [13], is one of the 
most widely accepted and robust models which 
precisely predict the time duration in pointing static 
targets. With the deepening of the Fitts’ law research, it 
was extended to predict the user performance in higher 
dimension [1], [3]. However, Fitts' law and its variants 
cannot model the user performance for dynamic targets 
which become ubiquitous in modern user interfaces [7].
For dynamic targets, Jagacinski et al.’s model [11] is 
the most well-known approach that can estimate MT for 
moving targets by introducing the target speed as a 
term into Fitts’ law. Recently, to further understand the 
uncertainty, a more fundamental factor in the pointing 
task affecting user performances, Huang et al. 
proposed a Ternary-Gaussian model that predicted the 
endpoint distribution for moving targets in 1D [9] and 
2D [10] spaces. Although this model has been verified 
in multiple interaction scenarios, it is only adaptable for 
circular targets, which limits its application. In this 

Figure 1: Modeling the endpoint 
distribution of moving target with 
arbitrary shape.



paper, we will try to extend this model to make it 
capable of modeling the endpoint distribution in 
pointing of moving targets with any shape.

Considering the shape effect on target acquisition, 
there are also many existing studies in HCI literature. 
For those targets with non-rectangular shape. 
Grossman and Balakrishnan et al. [3], [4] proposed a 
probabilistic model to predict MT of pointing at targets 
with arbitrary shapes by obtaining selection center and 
tolerance from endpoints and mapping them to the 
Fitts' ID. However, as Grossman and Balakrishnan’s 
model did not directly predict the endpoint distribution, 
ones have to re-sample endpoints for new target when 
applying it. Besides, the assumption that the of 
endpoint distribution increased linearly with the 
distance may not hold in moving target selection. 
Evidence showed that the effect of initial distance is 
much smaller and usually negligible for MT [11] and 
pointing accuracy [9] when pointing moving targets 
with position control systems like mouse.

GMM-based Ternary Gaussian Framework
To extend the Ternary-Gaussian model capable of 
modeling endpoint distribution with arbitrary shapes, 
we 1) iteratively selected the maximum inscribed circle 
of the target to divide the target into multiple sub-
targets, and 2) used the Ternary-Gaussian model to 
generate a speculative endpoint distribution for each 
sub-target. Finally, we 3) used the Gaussian mixture 
model to mix these speculative endpoint distributions 
according to a weighting strategy to obtain the final 
endpoint distribution of the shaped target.

For splitting the shaped target into sub-targets, we
used the Max Inscribed Circles algorithm 

in ImageJ [14] to get the max inscribed circles fill with 
each shape as shown in figure 2. The algorithm
iteratively searched the circle with the largest tangent 
area to the edge inside of a polygon, to realize the 
segmentation of a polygon into sub-targets with
multiple inscribed circles.

For generating speculative endpoint distribution, we 
used the 2D Ternary-Gaussian model [10] to calculate 
the corresponding distribution for each sub-target. 2D 
Ternary-Gaussian model described the selection 
endpoints of a circular target as a 2D Gaussian random 
variable with the mean and covariance associated with
the size and speed of the target as shown in Equation 1
and 2.

                                     =  + + + (1) 
  = + + + 00 + +      (2)

Where, W and V represented the size and speed of the 
target, (  , ) represented the center of the target, 
and at, bt, ct, dt, et, ft, gt, dn were free parameters. The 
subscripts t and n represented the two axes of the 
endpoint coordinates, where t is the axis tangential to 
target velocity and n is the axis normal to it. Wt and Wn

represent major minor axis of the elliptical target
(Wt=Wn for circular target).

For mixing the speculative endpoint distributions of 
sub-targets into final endpoint distribution, we used the 
Gaussian mixture model (GMM) to generate a mixture 
distribution composed by all the speculative (Gaussian) 
distributions ( (  | , )) of the sub-targets with weight 

Figure 2: The endpoint
distributions, polygon centroid 
and max inscribed circles of three 
shapes.



. Thus, we have the final formulation of the GMM-
based Ternary Gaussian framework as follow:              ( ) =  (  | , )       ( = 1 ) (3) 
Where  represents the number of the speculative 
distributions. By stacking several Gaussian probability 
density functions with an appropriated weighting 
strategy determined each , this framework can
flexibly be used to approximate distributions in any 
form.

Based on the above GMM-based Ternary Gaussian
framework (GTF), we proposed two candidate models
differ by whether to consider the overall uncertainty of 
pointing the target independently. We describe the two 
candidate models in the next section.

Candidate Models
Model-1 is a two-part model in form of a weighted 
sum of a Global Uncertainty part ( , ) and a Local 
Uncertainty part ( ) as shown in Equation 4:

  ( ) = ( , ) + (1 ) ( ) [0, 1] (4)
           ( ):      =               (5)
For the Global Uncertainty part. We assumed that the 
user perceive the shaped target as an ellipse in a global 
perspective. Thus, we used the 2D Ternary-Gaussian
model to approximate the Global Uncertainty part by 
calculating endpoint distribution of an ellipse target
centering at the polygon centroid of the target. The 
major axis (Wt) and the minor axis (Wn) of the ellipse

was set as the width and height of the target’s 
circumscribed rectangle.

For the Local Uncertainty part. A GTF was used to 
represent the influence of target shape. As people is 
more likely to click on a target with bigger size, the 
weight of each Gaussian distribution in the GTF was
determined by the area of the corresponding sub-
target . The constant was eliminated when 
normalizing the weights.

The free parameter is used to balance the weight of 
the parts of Global Uncertainty and Local Uncertainty,
which is varied by targets. Generally, a smaller value 
corresponds to a more irregular target, while a bigger
one corresponds to a more regular target.

In contrast to splitting the global and local uncertainty
into two parts, Model-2 directly model the two parts 
with one single GTF (Equation 6). For doing that, we 
designed a weighting strategy of the GTF to reflect 
these two kinds of uncertainty as shown in Equation 7.

                                          ( ) = ( )                                 (6)
            ( ):     =  / /          (7)
Based on considering the area of the sub-target, this 
the weighting strategy additionally took the distance 
between the sub-target and the target center into 
account. As a result, the weight of a sub-target
decreases as the distance to the target center 
increases, and increases as its area increases.

Figure 3: The experimental 
apparatus

Para. Term Value

- 9.1105

-0.0987

0.0508

- 71.6353

0.0029

0.0249

-0.1431

- 63.8703

0.0007

0.0248

Table 1: Coefficients of the 2D
Ternary-Gaussian model estimated by 
our data.



According our prior observation. We found that the 
probability of a sub-target to be hit is nonlinearly 
declining with its distance to the target center. We used
a power function with a free parameter to model 
this phenomenon. As a result, the weight is set as/ as the effect of the distance is opposite to the
area. Finally, normalizing the weights yields to an 
expression of the weighting strategy shown in Equation 
7.

Experiment
We conducted an experiment to evaluate the 
performance of the proposed two candidate models. 
The experiment followed a within-subject design with 
four fully crossed variables, including 4 target shapes, 2
initial distances (192 and 384 pixels), 3 sizes (96, 192,
384 pixels), and 3 speeds (96, 192, 384 pixels/sec).

The four target shapes included a symmetrical square, 
a semi-symmetrical fish shape, and an asymmetric 
shape of a running man (Figure 2). A circular target 
was also included for achieving the parameters of 2D
Ternary-Gaussian model. Widths of irregular target 
were determined by the diagonal length of the 
circumscribed rectangle.

We recruited 15 participants (6 females, 9 males, 25.5 
years old on average). All the participants were right-
handed. The experiment was conducted on a Lenovo 
JiaYue 30600I desktop computer, the display is a 23-
inch Dell P2314H LED display with a resolution of 1920

1080, and the mouse is a Dell ms116t with 1000dpi.

In each trial, a participant clicked the start button 
located in the center of the window, and then a target 
with specified shape and size appeared on the screen 

and started moving with a fixed speed heading in a 
random direction. The initial position of the target was 
randomly set on the circumference of a certain radius 
from the start button. The participant was asked to 
click the target quickly and accurately as possible with 
the computer mouse. The participant could only 
attempt to acquire the target once. Selection endpoint 
was recorded no matter the target was hit or miss. 
Each condition repeated 10 times, yielding a total 15 
participants × 4 shapes × 2 distances × 3 sizes × 3 
speeds × 10 repeats = 10800 endpoints. The orders of 
the conditions were randomized.

Results and Discussion
For getting the coefficients of the 2D Ternary-Gaussian 
model in our experimental environment, we used the 
data of the circular target to train the model. All nine 
sets of endpoints with 300 samples in each set passed 
the normality test using 2D Kolmogorov-Smirnov with a 
confidence level of 95%. The coefficients estimated by 
the nlinfit function provided in MATLAB were shown in 
Table 1. After we had the coefficients of the 2D 
Ternary-Gaussian model, we built and evaluated the 
two candidate models (i.e., Model-1 and Model-2) in 
the other three shapes. The free parameters and 
were estimated separately by shapes. The 2D Ternary-
Gaussian model was also evaluated as a baseline.

We used two measures to evaluate the models. 1) The
similarity measured by the Hellinger Distance [6] (HD)
between the actual and predicted endpoint 
distributions; and 2) mean absolute error (MAE) from 
selecting error rates predicated by the models to the 
actual error rates. The HD was used to quantify the 
similarity between two probability distributions with the 
range from 0 to 1. A value 0 means the two 



distributions are entirely consistent, and 1 means that 
they are completely inconsistent.

As shown in Table 2, for the square shape, the 
distribution similarity of the two candidate models was 
slightly better than the baseline (0.005 and 0.006 in 
HD). It may because the regularity of the square shape 
limited the advantages of the two candidate models. As 
a result, the improvements of the candidate models in 
predicting error rates were also marginal (0.60% and 
0.61% in MAE). For the fish shape, the distribution 
similarity of Model-2 was higher than the baseline 
(0.059 in HD), while only a negligible improvement 
of Model-1 was found. Therefore, Model-2 got a 
notable improvement in predicting error rates with 
8.31% in MAE. We found similar results in the shape of 
the running man. Compared with the baseline, Model-
2 reduced 0.32 HD in distribution similarity while it 
reduced the 9.58% MAE of error rate 
prediction. Model-1 got the same performance as the 
baseline in the shape of the running man. Therefore, 
we finally determined the Model-2 as the winning 
candidate in this work. Figure 4 showed the actual 
endpoints and endpoint distribution predicted by our 
final model.

Conclusion and Future Work
In this paper, we proposed a GMM-based approach to 
model the uncertainty in pointing moving targets with 
arbitrary shape. We compared the performance of two 
candidate models and chose one as our final proposed 
model. Results showed that our model could better 
describe the endpoint distribution and predict the error 
rate for moving targets with arbitrary shapes.

However, this work is limited by the small number of 
tested types of shape. Some extreme shapes such as a 
thin stick or a ring were not evaluated. It is very 
interesting to find out how our model will adapt to 
these shapes and weather the free parameter of the 
model can reflect the characteristics of them. In the 
future, we also interested in verifying our model in 
more practical scenarios involving moving targets, such 
as vertical reality and gameplay. It may provide helpful 
insights for the design of these dynamical user 
interfaces.
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Model
Square Fish Person

Distributions 
Similarity (HD)

Error Rate
(MAE)

Distributions 
Similarity (HD)

Error Rate
(MAE)

Distributions 
Similarity (HD)

Error Rate
(MAE)

2D Ternary-
Gaussian Model

0.158 1.45% 0.251 9.99% 0.267 11.98%

Model-1 0.152 0.85% 0.247 9.46% 0.267 11.98%
Model-2 0.153 0.84% 0.192 1.68% 0.235 2.40%

Table 2: The experimental results of the 2D Ternary-Gaussian model and two candidate models in three shapes.

  

Figure 4: The actual endpoints 
and predicted endpoint 
distribution of Model-2.
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